What Are Digital Twins?

Posted by Brian Hoey on Feb 14, 2019 9:00:00 AM

At this point, if you’ve heard of digital twins, it’s likely that you’ve also heard them discussed in relation to the NASA’s Apollo 13 mission. For those of you who haven’t, the modern conception of a digital twin owes a lot to the structures that NASA put in place in case of exactly the sort of malfunctions that almost doomed the astronauts aboard Apollo 13. To wit, once John Swigert communicated to NASA that the spacecraft was experiencing an issue (in this case, an oxygen tank explosion had caused a cascade of system malfunctions), engineers and planners on earth were able to replicate the problems using a full-scale, physical model of the entire craft. Using this live, physical simulation of the systems operating in space, they were able to identify the issue and communicate a plan for repairs to the crew.

Read More

Topics: Industry 4.0, Digitization, Advanced Analytics

Can Digitization Reduce Supply Chain Disruptions?

Posted by Brian Hoey on Feb 7, 2019 9:00:00 AM

In no particular order, the top supply chain disruptions include climate and weather events, forecasting errors, new trade regulations, oil and freight price fluctuations, machine and fleet breakdowns, and poor IT and technology integration, among others. As you peruse the list above, you might notice each of these disruptions can be put into one of two categories: fast or slow. Things like machine breakdowns and catastrophic weather can happen in the blink of an eye, and supply chain managers have to be prepared to preserve value via a backup plan. But other issues, like poor forecasts or integration issues, compound slowly over time—sometimes so slowly that it can be hard to identify the root cause of whatever difficulty your company is experiencing.

Read More

Topics: Digitization, Advanced Analytics

What Is Job Shop Scheduling?

Posted by Brian Hoey on Feb 5, 2019 9:00:00 AM

Historically, we tend to think of Henry Ford’s adoption of the assembly line as one of the most important moments in the history of automotive manufacturing—a moment when, all of a sudden, automobiles could be produced in an efficient, cost effective way. While it’s certainly true that this was a watershed moment for the industry, this emphasis on the assembly line can have the effect of obscuring that other production scheme that’s so integral to lives of many modern auto makers: the job shop. Indeed, job shop environments are crucial in many production workflows for the creation of parts and even whole cars. As a result, the ability to create efficient production schedules in such an environment can be a key value added propositions for manufacturers.  

Read More

Topics: Advanced Analytics, Job Shop Scheduling

How Big Data is Impacting Supply Chain Management

Posted by Brian Hoey on Jan 24, 2019 9:00:00 AM

Let’s say that you’re in charge of the omelet bar for a boutique hotel breakfast service. Guests line up, plates in hand, and when they reach the front of the line they let you know what type of omelet they’d like (egg vs. egg-white) and with what ingredients. On a slow day, you can cook the eggs as you go, but when the line starts to get longer it becomes incumbent upon you to start cooking the eggs in advance and add the extra ingredients (cheese, onions, peppers, etc.) as they’re ordered. When the line gets really long, you start adding cheese to a number of the pre-omelets, on the assumption that most people will want cheese. When the line gets even longer, you have a set of common omelet orders on the griddle ready to go.

Read More

Topics: Advanced Analytics, Global Supply Chain Management

Are Your Demand Forecasts Data-driven?

Posted by Brian Hoey on Jan 15, 2019 9:00:00 AM

Let’s take a second to compare two hypothetical World Cup forecasts. Both forecasts are trying to determine who the likely winner of the contest will be, but their methods differ fairly radically. The first forecast starts out with team rosters, facts and figures, and all manner of statistics pertaining to the various players and teams. Based on those facts and figures, a statistician begins to derive and weight a set of probable outcomes. Those outcomes are sent on to a human prognosticator (an expert in the sport, perhaps a former player or coach or a newspaper commentator) who uses his experience and judgment to tweak the probabilities handed down to him by the statistician. The stats think that a particular player on the French team will age poorly, but the prognosticator thinks otherwise, and changes the predictions accordingly. After this first round of edits, the predictions are passed on to the next editor, who brings her own experience to bear, changing the projected outcomes yet again.

Read More

Topics: Demand Capacity Planning, Advanced Analytics

5 Benefits of Supply Chain Integration

Posted by Brian Hoey on Jan 8, 2019 9:00:00 AM

In baseball, the pitcher and the catcher must communicate via signs in order to implement a strategy to get the batter out. Depending on the strategy, the various fielders may need to position themselves closer to or farther away from home plate (if the pitcher is trying to induce a ground ball out or a fly ball out, for instance), which means that the strategy must be agreed upon beforehand and disseminated amongst the entire squad—not just the pitcher and the catcher. Picture the alternative: the pitcher decides on his own what approach to take, and the catcher is stuck trying to catch whatever is thrown at him without any advanced notice; meanwhile, the fielders don’t know what to expect, so they’re not able to position themselves appropriately. As a result, a batted ball is likely to result in chaos. 

Read More

Topics: Lean Manufacturing, Advanced Analytics

A 5 Step Guide to Optimizing Total Logistics Costs

Posted by Brian Hoey on Dec 6, 2018 9:00:00 AM

Buying health insurance in the U.S. is an odd business. Essentially, you have to balance your monthly premium (i.e. the amount that you pay your insurance provider each month for continued coverage) with your deductible (the amount that you have to pay out of your own funds before the insurance company will contribute to your care, broadly speaking). In general, if one of those two costs is particularly high, the other is likely to be lower, and vice versa. If you’re thinking about your choice in terms of total cost, a high deductible is risky, but has the potential to be cheaper if you can avoid getting sick over the course of the year. A high premium, on the other hand, might put you in a position where you’re essentially paying for medical care that you’re not receiving. The question, then, is how much risk are you willing to take on?

 

Read More

Topics: Supply Chain Logistics, Advanced Analytics

How Real-time Decision-making Will Change Your Whole Supply Chain

Posted by Brian Hoey on Nov 22, 2018 9:00:00 AM

Let us consider the smart fridge. This modern convenience, part of the much-vaunted Internet of Things and a key component of many smart homes, give you the ability to track its contents and see them displayed via smart phone or tablet when you’re away from home. To some, this might seem like somewhat of a frivolous piece of technology, but imagine the following scenario: you’re at the grocery store, doing your weekly stocking up; you have a whole shopping list full of items that you expect to be depleted within the next few days, from eggs and butter to fresh produce. What you’re not planning on buying is milk, because when you left the house you still had most of a gallon left. Then, all of a sudden, you receive an alert from your phone letting you know that you’re out of milk. Unbeknownst to you, your partner has accidentally taken the existing gallon out of the fridge and spilled it. Luckily, she instructed the fridge to send you a real-time update and you were able to add it to your shopping list before you left, saving yourself an extra trip to the store or a week without any milk.

 

Read More

Topics: Industry 4.0, Advanced Analytics

5 Keys to Optimizing Furniture Logistics

Posted by Brian Hoey on Nov 20, 2018 9:00:00 AM

Lots of businesses across disparate corners of the supply chain like to talk about their efforts to go lean, i.e. to drastically reduce their inventory usage by reducing lead times between production and shipping. This is often a logistical high wire act, requiring businesses to improve their production control, their demand forecasting, and their transport logistics. It’s also something that many furniture manufacturers have been doing since long before there was a trendy name for it. In fact, many modern furniture manufacturers rely on workflows that skip the inventory stage altogether, with products going straight from their respective production lines to the delivery vehicles that will bring them to their ultimate destinations.

 

Read More

Topics: transport logistics, Advanced Analytics

Forecast Accuracy: Demand Sensing in the Supply Chain

Posted by Brian Hoey on Nov 15, 2018 9:00:00 AM

Let’s say, hypothetically, that you’re a big fan of baking, and every so often your officemates are happy to act as guinea pigs by trying out whatever inventive confections you dream up. The one problem here is that your business involves a lot of travel and a lot of semi-remote workers, so it can be difficult to estimate how many people are going to be in the office on a given day—i.e. it's tough to know how large a batch of cookies to bring in when you decide to bake for your coworkers. You might simply base your batch sizes on past demand levels, assuming that because the last time you baked there were X number of people in the office, similar numbers are likely to hold true again, but this strategy has the potential to miss the mark drastically.

Read More

Topics: Advanced Analytics, Big Data